

APPLICATION EXPERT

User Guide

Accessing APEX

Welcome to APEX, the SGS Application Expert, your go-to guide for optimizing tool performance. APEX provides specific application information, taking the guess work out of determining the ideal cutting parameters for your SGS endmills and drills.

APEX can be accessed directly from the KYOCERA SGS website, either from the **Resources Menu** or from the **Product Detail Pages**.

A one-time registration is required to access APEX. After initial registration, you will enter a username and password to gain access.

	EX x EXPERT			
Log In	Sign Up			
yours@example	2.com			
irst Name			SGS	
ast Name			Log In	Sign Up
elephone		=	yours@example.co	om
company		6	your password	
ity			Don't romombor you	r pocoword?
tate			bont remember you	r passworu:
Country			L <mark>o</mark> g in	>
Cip Code				
signing up, you agree to privacy	our terms of service and policy.			
SIGN	UP >			

After completing the registration process, you'll be asked to input some key metrics before proceeding.

- The application type: Milling or Drilling
- The Display Units: Fractional or Metric
- The Workpiece Material, which can be selected from a comprehensive list of primary materials, subcategory materials, hardness ranges, and some common examples of that specific material.
- 4 The Product EDP. If you are unsure of the product EDP, click on the link to the **SGS product locator.** After selecting your tool, enter the six-digit number into the Product EDP field.

Each of these initial entries are required but can be changed on the fly once in the Application Expert.

SGS APPLICATION ● MILLING ○ DRILLING **DISPLAY UNITS** FRACTIONAL O METRIC 3 WORKPIECE MATERIAL* STEEL | Low Carbon | ≤ 10 HRc | A36 , 1018 , 1025 STEEL | Medium Carbon | 10 to 20 HRc | 1030, 1045, 1525 STEEL | High Carbon | 20 to 28 HRc | 1060 , 1080 , 1572 STEEL | Medium Alloy | ≤ 28 HRc | 4140 , 4340 , 8620 STEEL | High Strength Alloy | 28 to 35 HRc | 300M , 4340 , H13 STEEL | High Strength Alloy | 35 to 45 HRc | 300M, 4340, H13 STEEL | Tool, Mold & Die | ≤ 28 HRc | D2 , H13 , P20 STEEL | Tool, Mold & Die | 28 to 35 HRc | D2, H13, P20 STEEL | Tool, Mold & Die | 35 to 45 HRc | D2, H13, P20 STEEL | Tool, Mold & Die | 45 to 52 HRc | D2 , H13 , P20 STEEL | Tool, Mold & Die | 52 to 58 HRc | D2, H13, P20 STEEL | Tool, Mold & Die | 58 to 65 HRc | A2 , D2 , M2 CAST IRON | Low-Medium Alloy | ≤ 24 HRc | Gray , Malleable , Ductile

PRODUCT EDP*

Use SGS Tool Search to Locate Product EDP
https://www.kyocera-sgstool.com/products/categories/solid-round-tools/milling
37100
NEXT

When you click next, you'll enter the main screen of the app.

On the top of the APEX Milling page, you'll see the parameters you entered on the previous screen along with the product image and drawing

Below the images you'll see attributes and suggestions for the selected tool:

1 Tool Attributes and Dimensions

- 2 The Preferred Cut Type
- Suggested Cooling **3**
- 4 Suggested Materials

Below these tables, you'll see blue boxes to enter optional overrides. These are the fields that allow you to further tailor your results and give you the ideal rates for your specific application.

After entering the optional overrides and clicking "Calculate Cutting Parameters", the application data is revealed.

	Hello gra	ntgardine	r88		Technical	Support	Log C)ut		
			Workpiece Materia	al		Display	Units	Produ	ct EDP	
		STEEL T	ool, Mold & Die ≤ 28 HRc	D2 , H13 , P20	~	FRACTIO	NAL 🗸	37	100	
e	Ð				-APMX-	LF	DCON	CAI	PB-HPR NEMANCE ROUGHIN	
		Tool At	tributes		Prefe	erred Cut Type ((Ae & Ap) for Se	ries *		
	E	DP	37100	Heavy	Moderate	Light	Fine	Wall Finish	Floor Finish	
	TOOL	UNITS	FRACTIONAL	100%-40% Ae	40%-25% Ae	25%-10% Ae	10%-2% Ae	2%-0% Ae	Up to 100% Ae	
	CATE	GORY	HIGH PERFORMANCE	Ap ≤ 1 x DC	Ap ≤ 1.5 x DC	Ap ≤ 2.5 x DC	Ap ≤ 4.5 x DC	Any Ap	Ap ≤ .02 x DC	
	CATALO	G CODE	Z5CR	*	*	*	*	÷	÷	
	CUTTIN	G EDGES	5	1 L		<u>^</u>	<u>^</u>	^		
	CUTTING E	DGE STYLE	CONTINUOUS	1	E	Best \star 🛛 Be	tter ☆ Goo	o bo		
	END CONF	IGURATION	CORNER RADIUS				Л			
	HELIX	Ae ★	37°		ESTER COOL	ING	SUG	CESTED MATE	DIALS	
		OUTTINO	NO	0000	LOIED OUUL					

Calculate Cutting Parameters

	OPTIONAL OVERRIDES													
SPEED	FEED	MAX MACHINE RPM	PROGRAMMED Ap	TILT ANGLE	RADIUS Contour	RAD PRIOR TO Cut	PART OF CS Cutting							
~	~				~		~							

Hide Cutting Parameters

Here in the **Cutting Parameters** Table, you will find all the application data for the selected tool at a range of stepovers.

MILLING DATA FOR SELECTED TOOL RADIAL MILLING: CUTTER DIAMETER PERCENTAGE (% DC) UNIQUE STEPOVER (Ae) HEAVY MODERATE LIGHT FINE WALL FINISH FLOOR FINISH 0.00% Radial Percentage (% DC) 50% ≤2% Up to 100% 100% 40% 25% 20% 15% 10% 7% 5% 2% 120° 90° 37° 31° 26° 16° Radial Engagement Angle* 180° 78° 60° 53° 46° 16° Up to 180° 0.7500 0.5625 0.3750 0.3000 0.2475 0.1875 0.1500 0.0750 0.0525 0.0375 0.0150 0.0150 Ae of Effective Diameter (inch) 0.1125 0.7500 Ap Max or Programmed (inch) 0.7500 0.7500 0.9375 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.0150 SFM 209 229 251 277 293 314 331 354 376 418 460 523 523 314 1277 1410 1490 1597 2342 2661 2661 1597 1065 1169 1688 1802 1916 2129 RPM 0.00258 0.00258 0.00265 0.00275 0.00298 0.00323 0.00431 0.00506 0.00593 0.00207 0.00258 IPT 0.00258 0.00362 0.00923 13.8 15.1 16.5 18.7 20.5 23.8 27.3 32.6 41.3 53.9 69.4 122.8 27.5 20.6 IPM MRR*** (in3/min), Ae x Max Ap x IPM 7.74 6.37 5.80 4.90 4.43 3.91 3.58 3.21 2.71 2.48 2.28 1.61 0.36 0.23 13.34 12.20 10.41 9.47 8.42 7.76 7.02 6.02 5.55 5.16 3.82 1.32 1.06 Power required at motor**** (HP) 16.07 Power required at spindle**** (HP) 12.38 10.19 9.28 7.85 7.09 6.25 5.72 5.13 4.33 3.96 3.64 2.58 0.58 0.37

A custom radial percentage can be entered in the Unique Stepover field.

Ð

**Radial Engagement Angle is based upon a straight toolpath unless an ID/OD Contour (Optional Overrides) is selected. This will adjust the engagement angle based on type of contour and the diameter entered.

Actual MRR will vary depending on the toolpath and how much "air cutting" is occurring due to the part geometry *Power ratings are based upon an 80% machine efficiency

The two tables below that	
provide additional cutting	
data:	

Ramping parameters for straight ramping or plunging and Helical Ramp entry methods.

				-				-							
Max Depth per Ramp 0.750 Recommended (inch)		AXIAL ENTRY: PLUNGE, STRAIGHT RAMP ANGLE													
Recommended (inch)		90°	45°	25°	15°	10°	9°	8°	7°	6°	5°	4°	3°	2°	1°
Distance at Max Depth pe	r Ramp (inch)	-	-	-	-	-	-	-	6.881	7.905	9.339	11.489	15.071	22.234	43.721
	SFM	-	-	-	-	-	-	-	209	209	229	242	251	277	293
	RPM		-	-	-		-		1065	1065	1169	1234	1277	1410	1490
	IPT	-	-	-	-	-	-	-	0.0014	0.0016	0.0018	0.0021	0.0026	0.0028	0.0031
	IPM		-	-			-		7.6	8.3	10.6	12.8	16.5	20.0	23.1
art Geometry such as pocket size will determine actual depth per ramp and ramp distance - shown is the distance when max depth is achieved.															

Diameter Range Minimum	0.98						AXIA	L ENTRY: HEL	ICAL RAMP A	NGLE					9
(inch) Maximum	1.13	30°	25°	20°	15°	10°	9°	8°	7°	6°	5°	4°	3°	2°	1°
Drop Per Rev at Maximum D	Diameter (inch)	-	-	-	-	-	-	-	0.145	0.124	0.103	0.082	0.062	0.041	0.021
	SFM	-	-	-	-	-	-	-	229	242	251	277	293	314	331
	RPM		-	-	-	-	-	-	1169	1234	1277	1410	1490	1597	1688
	IPT	-	-	-	-	-	-	-	0.0018	0.0019	0.0021	0.0023	0.0026	0.0028	0.0031
	IPM		-	-	-	-	-	-	10.6	12.0	13.2	16.4	19.3	22.7	26.2

Diameter range is a suggestion for normal entry situations - diameter can vary from this depending on part geometry such as ramping around a boss which will affect (increase) drop per rev. For non center-cutting tools, do not go below minimum diameter

□ SPEED CALCULATOR □ STEPOVER □ FEED CALCULATOR

Distance at Ma Depth per Ram

Clicking the green plus symbols to the right will give you a few visuals for some of the labels on the corresponding tables.

MILLING DATA FOR SELECTED TOOL					R	ADIAL MILLIN	G: CUTTER DI	AMETER PER	CENTAGE (% I	DC)					UNIQUE STEPOVER (Ae)
		HEAVY			MODERATE			LIGHT			FINE		WALL FINISH	FLOOR	
													FINISH		
Radial Percentage (% DC)	100%	75%	50%	40%	33%	25%	20%	15%	10%	7%	5%	2%	≤2%	Up to 100%	0.00%
Radial Engagement Angle**	180°	120°	90°	78°	71°	60°	53°	46°	37°	31°	26°	16°	16°	Up to 180°	
Ae of Effective Diameter (inch)	0.7500	0.5625	0.3750	0.3000	0.2475	0.1875	0.1500	0.1125	0.0750	0.0525	0.0375	0.0150	0.0150	0.7500	
Ap Max or Programmed (inch)	0.7500	0.7500	0.9375	0.8750	0.8750	0.8750	0.8750	0.8750	0.8750	0.8750	0.8750	0.8750	0.8750	0.0150	
SFM	209	229	251	277	293	314	331	354	376	418	460	523	523	314	
RPM	1065	1169	1277	1410	1490	1597	1688	1802	1916	2129	2342	2661	2661	1597	
IPT	0.00258	0.00258	0.00258	0.00265	0.00275	0.00298	0.00323	0.00362	0.00431	0.00506	0.00593	0.00923	0.00207	0.00258	
IPM	13.8	15.1	16.5	18.7	20.5	23.8	27.3	32.6	41.3	53.9	69.4	122.8	27.5	20.6	
MRR*** (in3/min), Ae x Max Ap x IPM	7.74	6.37	5.80	4.90	4.43	3.91	3.58	3.21	2.71	2.48	2.28	1.61	0.36	0.23	
Power required at motor**** (HP)	16.07	13.34	12.20	10.41	9.47	8.42	7.76	7.02	6.02	5.55	5.16	3.82	1.32	1.06	
Power required at spindle**** (HP)	12.38	10.19	9.28	7.85	7.09	6.25	5.72	5.13	4.33	3.96	3.64	2.58	0.58	0.37	

**Radial Engagement Angle is based upon a straight toolpath unless an ID/OD Contour (Optional Overrides) is selected. This will adjust the engagement angle based on type of contour and the diameter entered.

Actual MRR will vary depending on the toolpath and how much "air cutting" is occurring due to the part geometry *Power ratings are based upon an 80% machine efficiency

Max Depth per Ramp 0.750		AXIAL ENTRY: PLUNGE, STRAIGHT RAMP ANGLE												
Recommended (inch)	90°	45°	25°	15°	10°	9°	8°	7°	6°	5°	4°	3°	2°	1°
Distance at Max Depth per Ramp (inch)	-	-	-	-	-	-	-	6.881	7.905	9.339	11.489	15.071	22.234	43.721
SFM	-	-	-	-	-	-	-	209	209	229	242	251	277	293
RPM	-			-	-		-	1065	1065	1169	1234	1277	1410	1490
TAI	-	-	-	-	-	-	-	0.0014	0.0016	0.0018	0.0021	0.0026	0.0028	0.0031
IPM	-		-	-	-	-	-	7.6	8.3	10.6	12.8	16.5	20.0	23.1

Part Geometry such as pocket size will determine actual depth per ramp and ramp distance - shown is the distance when max depth is achieved.

Diameter Range Minimum 0.98		AXIAL ENTRY: HELICAL RAMP ANGLE												
(inch) Maximum 1.13	30°	25°	20°	15°	10°	9°	8°	7°	6°	5°	4°	3°	2°	1°
Drop Per Rev at Maximum Diameter (incl) -	· -	-	-	-	-	-	0.145	0.124	0.103	0.082	0.062	0.041	0.021
SFI	i -		-	-	-	-	-	229	242	251	277	293	314	331
RPI	-	-	-	-	-	-	-	1169	1234	1277	1410	1490	1597	1688
IP	r -	· -	-	-	-	-	-	0.0018	0.0019	0.0021	0.0023	0.0026	0.0028	0.0031
IPI	-	-	-	-	-	-	-	10.6	12.0	13.2	16.4	19.3	22.7	26.2

Max Depth per

Diameter range is a suggestion for normal entry situations - diameter can vary from this depending on part geometry such as ramping around a boss which will affect (increase) drop per rev. For non center-cutting tools, do not go below minimum diameter.

				-				-	-		-				
Max Depth per Ramp	0.750	AXIAL ENTRY: PLUNGE, STRAIGHT RAMP ANGLE													
Kecommended (inch)		90°	45°	25°	15°	10°	<u>9</u> °	8°	7°	6°	5°	4 °	3°	2°	1°
Distance at Max Depth pe	r Ramp (inch)	-	-	-	-	-	-		6.881	7.905	9.339	11.489	15.071	22.234	43.721
	SFM	-	-	-	-	-	-	-	209	209	229	242	251	277	293
	RPM	-	-	-	-	-	-	-	1065	1065	1169	1234	1277	1410	1490
	IPT	-	-	-	-	-	-	-	0.0014	0.0016	0.0018	0.0021	0.0026	0.0028	0.0031
	IPM	-	-	-	-	-	-	-	7.6	8.3	10.6	12.8	16.5	20.0	23.1

Part Geometry such as pocket size will determine actual depth per ramp and ramp distance - shown is the distance when max depth is achieved.

Diameter Range Minimum	0.98						AXIA	L ENTRY: HEL	ICAL RAMP AN	IGLE					đ
(inch) Maximum	1.13	30°	25°	20°	15°	10°	9°	8°	7°	6°	5°	4°	3°	2°	1°
Drop Per Rev at Maximum D	iameter (inch)	-	-	-	-	-	-	-	0.145	0.124	0.103	0.082	0.062	0.041	0.021
	SFM	-	-	-	-	-	-	-	229	242	251	277	293	314	331
	RPM	-	-	-	-	-	-	-	1169	1234	1277	1410	1490	1597	1688
	IPT	-	-	-	-	-	-	-	0.0018	0.0019	0.0021	0.0023	0.0026	0.0028	0.0031
	IPM	-	-	-	-	-	-	-	10.6	12.0	13.2	16.4	19.3	22.7	26.2

Diameter range is a suggestion for normal entry situations - diameter can vary from this depending on part geometry such as ramping around a boss which will affect (increase) drop per rev. For non center-cutting tools, do not go below minimum diameter.

SPEED CALCULATOR STEPOVER FEED CALCULATOR

At the bottom of the page are additional features, including the **Comparison Tool, Summary Page, and Drawing Page**. Clicking Start Over will take you back to the opening screen but won't log you out of the application.

CATEGORY	HIGH PERFORMANCE												
TOOL UNITS - CATALOG CODE	METRIC	METRIC	METRIC	METRIC	METRIC								
CUTTING EDGES	4	4	5	5	5								
CUTTING EDGE STYLE	CONTINUOUS	CONTINUOUS	CONTINUOUS	CHIP BREAKER	CONTINUOUS								
END CONFIGURATION	CORNER RADIUS												
HELIX	34°-38°	34°-38°	37°	37°	37°								
CENTER CUTTING	YES	YES	NO	NO	NO								
COATING	MEGACOAT NANO	MEGACOAT NANO	TI-NAMITE M	TI-NAMITE M	TI-NAMITE A								
SHANK TYPE	SOLID ROUND	SOLID ROUND	WELDON FLAT	SOLID ROUND	SOLID ROUND								
DC	0.32	0.39	0.47	0.32	0.32								
RE	0.08	0.02	0.03	0.08	0.04								
APMX	0.75	0.87	1.02	0.94	0.71								
LF	2.48	2.83	3.27	2.95	2.95								
DCON	0.32	0.39	0.47	0.32	0.32								
LU	-	-	-	-	1.2598								
DN	-	-	-	-	0.2992								
INCLUDED ANGLE	-	-	-	-	-								
TIP DIAMETER	-	-	-	-	-								
PRODUCT EDP	47812	47816	47026	47511	47656								
COMPANY/SERIES	Z-Carb XPR	Z-Carb XPR	Z-Carb HPR	Z-Carb HPR	Z-Carb HPR								
STEPOVER % OF DC (Ae)	25% Ae 🗸 🗸	25% Ae 🗸 🗸	25% Ae 🗸 🗸	25% Ae 🗸	25% Ae 🗸								
SPEED OVERRIDE	~	~	~	*	*								
FEED OVERRIDE	~	~	~	*	*								
Radial Engagement Angle**	60°	60°	60°	60°	60°								
Ae of Effective Diameter (inch)	0.0788	0.0984	0.1181	0.0788	0.0788								
Ap Max or Programmed (inch)	0.7480	0.8661	1.0236	0.9449	0.7087								
SFM	402.0	405.0	297.0	295.0	295.0								
RPM	4875.0	3930.0	2402.0	3577.0	3577.0								
IPTIPT	0.001063	0.001448	0.002245	0.001181	0.001300								
IPM	20.73	22.76	26.96	21.12	23.25								
MRR*** (in3/min), Ae x Max Ap x IPM	1.22	1.94	3.26	1.57	1.30								
Power required at motor**** (HP)	3.35	4.96	7.94	4.14	3.53								
Power required at spindle**** (HP)	2.20	3.49	5.87	2.83	2.34								

Return to Calculation

The **Comparison Tool** allows you to enter up to five EDPs and a stepover for each to compare MRR for each scenario. Remember that MRR is a theoretical number and can be used to compare tools in similar toolpaths.

	XPERT	1	*	. 4				
	C RT	-	MATERIAL DISPLAY UNITS COOLANT IDIOD CONTOUR DIA PRIOR TO CUT	APPLICATION IN STEEL Tool, Mo FRACTIONAL FLOOD, MIST, DRY	NFORMATION Id & Die 28 to 35 HRc I SFM OVERRIDE FEED OVERRIDE MAX RPM OVERRIDE PART OF CS CUTTING	02 , H13 , P20 NO OVERRIDE NO OVERRIDE NO OVERRIDE	DATE	December 19, 2024
SERIES PRODUCT EDP	Z-Carb HPR 37100	PROGRAMMED AP TILT ANGLE	NO OVERRIDE NO OVERRIDE		(Ż		ET I
	TOOL SPECIFICATIONS	3			CA	BB-HPR		
CATEGORY	HIGH PERFORMANCE	SHANK TYPE	WELDON FLAT		HIGH PS	INFORMANCE ROUGHER		
TOOL UNITS - CATALOG CODE	FRACTIONAL - Z5CR	DC	0.75					
CUTTING EDGES	5	RE	0.19					
CUTTING EDGE STYLE	CONTINUOUS	APMX	0.875	1.1	LF	-		
END CONFIGURATION	CORNER RADIUS	LF	4	-/	APMX-	1		
HELIX	37°	DCON	0.75	alle pro 5		1		
CENTER CUTTING	NO	LU	-	18 00 2	and the second s	DCON		
COATING	TI-NAMITE M	DN	-	NCD		ŕ		
TAPER ANGLE		TIP DIAMETER	-	RE				

The summary page gives you all the selected application data and allows you to **Print Summary Page**, which will create a single page PDF, which can then be printed from your computer.

MILLING DATA FOR SELECTED TOOL									RADIAL	. MILLING							UNIQUE		
						Heavy			Moderate									Floor Finish	STEPOVER
N		Radial Percentage (% DC)			100%	75%	50%	40%	33%	25%	20%	15%	10%	7%	5%	2%	≤2%	Up to 100%	
	Rank:	Best ★	Better 🕁	Good o	*	\$	*	*	*	*	*	*	*	×	×	×	×	*	0%
			Radial Enga	gement Angle	180%	120%	90%	78%	71%	60%	53%	46%	37%	31%	26%	16%	16%	Up to 180*	0
		Aeo	of Effective D	iameter (inch)	0.7500	0.5625	0.3750	0.3000	0.2475	0.1875	0.1500	0.1125	0.0750	0.0525	0.0375	0.0150	0.0150	0.7500	0.0000
1		Ap	Max or Progr	ammed (inch)	0.7500	0.7500	0.9375	0.8750	0.8750	0.8750	0.8750	0.8750	0.8750	0.8750	0.8750	0.8750	0.8750	0.0150	0.8750
1			<u> </u>	SFM	198	217	238	262	277	297	314	335	356	396	436	495	495	297	495
1				RPM	1008	1107	1210	1336	1412	1513	1599	1707	1815	2017	2219	2521	2521	1513	2521
1				IPT	0.00258	0.00258	0.00258	0.00265	0.00275	0.00298	0.00323	0.00362	0.00431	0.00506	0.00593	0.00923	0.00207	0.00258	0.01298
1				IPM	13.03	14.31	15.63	17.70	19.40	22.57	25.83	30.89	39.09	51.06	65.76	116.33	26.06	19.54	163.68
1		MRR (in	3/min), Ae x I	Max Ap x IPM	7.33	6.04	5.50	4.65	4.20	3.70	3.39	3.04	2.57	2.35	2.16	1.53	0.34	0.22	0.00
1		Po	wer required	at motor (NP)	17.09	14.18	12.97	11.05	10.05	8.93	8.23	7.44	6.37	5.88	5.45	4.04	1.37	1.09	0.60
1		Pow	er required a	t spindle (HP)	13.19	10.86	9.89	8.36	7.56	6.66	6.10	5.47	4.62	4.22	3.88	2.75	0.62	0.40	0.00
	Max Depth p	x Depth per Ramp Recommended 0.75			AXIAL ENTRY: PLUNGE, STRAIGHT RAMP ANGLE														
1			(inch)	90"	45*	25*	15*	10*	9*	8"	7*	6*	5*	4*	3*	2*	1*	
	Di	stance at N	lax Depth pe	r Ramp (inch)	-		-	-	-	-	-	6.881	7.905	9.339	11.489	15.071	22.234	43.721	
				SFM	-		-	-	-	-	-	198	198	217	230	238	262	277	
				RPM	-	•		-	-	-	-	1008	1008	1107	1169	1210	1336	1412	
				IPT	-	-		-	-	-	-	0.00142	0.00155	0.00181	0.00207	0.00258	0.00284	0.00310	
1				IPM	•	-	·	-	•	-	•	7.17	7.82	10.01	12.08	15.63	18.99	21.89	
	Diameter R	ange (inch) Minimum	0.975						AXIA	L ENTRY: HEL	ICAL RAMP A	NGLE						
- L			Maximum	1.125	30*	25*	20*	X.	10*	9*	8"	7*	6"	5*	4*	3*	2*	1*	
1	Drop	Per Rev at	t Maximum D	iameter (inch)	-	-	-	•	•	-	-	0.145	0.124	0.103	0.082	0.062	0.041	0.021	
				SFM	-	-	-	-	<u>\</u> .	-	-	217	230	238	262	277	297	314	
				RPM	•	-	•	-		-	•	1107	1169	1210	1336	1412	1513	1599	
				IPT	-	-	-	-	-		-	0.00181	0.00194	0.00207	0.00233	0.00258	0.00284	0.00310	
				IPM		-	-	-	-		-	10.01	11.33	12.51	15.54	18.24	21.50	24.79	

Return to Calculation Print Summary Page

APPLICATION EXPERT						DIA PR	OR TO CUT			PART OF (CS CUTTING	1000	ENNIDE	-					
SERIES	Z-	Carb HPR		PROG	RAMMED AP	NO OV	ERRIDE					20				6			
PRODUCT EDP		37100			TILT ANGLE	NO OV	ERRIDE					7			7	1			
	T	OOL SPEC	CIFICATIONS	S							C		HPR			//			
CATEGORY	HIGH PI	ERFORMA	ANCE	ę	SHANK TYPE	WELDO	IN FLAT				MG	PERFORMANCE	DUGHER		01				
TOOL UNITS - CATALOG CODE	FRACT	IONAL - Z	SCR		DC	0.	75								P				
	0.01	5	<u></u>		RE	0.	19												
	COR	NER RADI			APMA	0.0	1			APMX-	LF	-							
HELIX	UUN	37°			DCON	0	75		. +				+						
CENTER CUTTING		NO			LU	0.		Cont	tact Details	A COLOR AND									
COATING	TI-	NAMITE N	1		DN			1											
TAPER ANGLE		-		TI	P DIAMETER			Г											
MILLING DATA FOR SELECTED TOO	L		Heavy	-	-	Moderate	-	1	USER	NAME EMAIL						NAM KSPT EMA	IE		
Radial Percentage (% DC)	100%	75%	50%	40%	33%	25%			PHONE						PHO	NE		
Rank: Best ★ Better ☆ Go	od o	*	*	*	*	*	*												
Radial Engagemen	t Angle	180%	120%	90%	78%	71%	60%	_	ADDITIC	DNAL									
Ae of Effective Diameter	r (inch)	0.7500	0.5625	0.3/50	0.3000	0.24/5	0.18/5	_	COMME	NTS									
Ap Max or Programmed	(inch)	108	217	238	262	277	207	_									11		
	RPM	1008	1107	1210	1338	1412	1513	_											
	IPT	0.00258	0.00258	0.00258	0.00265	0.00275	0.00298												
	IPM	13.03	14.31	15.63	17.70	19.40	22.57	_							Print Summa	y Page			
MRR (in3/min), Ae x Max Ap	x IPM	7.33	6.04	5.50	4.65	4.20	3.70											 	
Power required at moto	or (HP)	17.09	14.18	12.97	11.05	10.05	8.93												
Power required at spind	le (HP)	13.19	10.85	9.89	8.36	7.56	6.66												
ax Depth per Kamp Recommended 0 (inch)	.15	90°	45°	25°	15°	10°	Q°	8°	7º	6°	5°	4°	3°	2°	10				
Distance at Max Depth per Ram	(inch)	-	-	-	-	-	-	-	6.881	7.905	9.339	11.489	15.07	22.234	43.721				
	SFM	-	-	-	-	-	-	-	198	198	217	230	238	262	277				
	RPM	-	-	-	-	-	-	-	1008	1008	1107	1169	1210	1336	1412				
	IPT	-	-	-	-	-	-	-	0.00142	0.00155	0.00181	0.00207	0.00258	0.00284	0.00310				
	IPM		-	-		-		-	7.17	7.82	10.01	12.08	15.63	18.99	21.89				
Diameter Range (inch) Minimum 0.	125	202	259	202	459	402	AXIA	LENIRY: I	HELICAL RAMP /	WGLE	E1	-	- 29		49				
Dron Per Rev at Maximum Diamete	(inch)	30		20	13	-	9.	0.	0.145	0.124	0.193	0.082	0.062	0.041	0.021				
Drop r ci nev al maximum Diamete	SEM	-	-	-	-	-	-	-	217	230	238	262	277	297	314				
	RPM	-	-	-	-	-	-		1107	1169	1210	1336	1412	1513	1599				
	_	-	-	-	-	-	-	-	0.00181	0.00194	0.00207	0.00233	0.00258	0.00284	0.00310				
	IPT I											1		_					

Contact Information and Additional Comments entered here will be entered directly into the PDF.

For additional help or to provide feedback use one of the resources below.

- 1. Email apexsupport@kyocera-sgstool.com
- 2. Fill out the Support form on the <u>APEX web page</u>.
- 3. Contact your local Sales Engineer using this <u>locator map</u>.